新型 ACF 可见光催化剂的制备与比较机理研究

李重玖1,赵 然1*,朱德力2,刘 豪2,余 刚1,夏东升1

(1. 武汉纺织大学 环境工程学院,湖北 武汉 430200;2. 华中科技大学 煤燃烧国家重点实验室,湖北 武汉 430074)

摘 要:利用水合肼还原法制备Cu₂O,并向溶液中投入TiO₂粉末的方法制备的催化剂改性的沥青基活性炭纤维 (ACF-1),与经过水合肼还原法制备的Cu₂O,溶胶凝胶法制备的TiO₂混合的催化剂改性的沥青基活性炭纤维(ACF-4), 在反应设备中进行吸附脱除NO实验对比,证明前者吸附效率高而选择ACF-1进行下一步调整,水合肼还原法制备 Cu₂O过程中,先后对TiO₂投入量的不同,和ACF负载时间不同进行调节,在反应设备中进行脱除NO实验,最后选定 由Ti:Cu=0.5:1,负载时间为50min条件下制备的催化剂改性的沥青基活性炭纤维(ACF-1),并对ACF-1与ACF-4进 行XPS表征,分析改性前后ACF表面元素含量和官能团的变化。研究表明,改性后ACF表面官能含量增加,增强了ACF 对NO吸附能力,使脱硝效率达61%。

关键词:活性炭纤维(ACF);TiO2/Cu2O光催化剂;脱硝

中图分类号: TS102.52 文献标识码: A 文章

文章编号: 2095-414X(2015)03-0022-06

1 引言

活性炭纤维(ACF)具有如下一些结构特征:(1)兼有纤维的各种特性,能制成纤维束、纸、布和毡等 形状,纤维直径细,与被吸附物质的接触面积大;(2)微孔直接开口于表面,从而使其外表面积大,吸脱速 度快;(3)孔径分布窄,绝大多数孔径在10nm以下,因而有效吸附孔的数目多,吸附容量大。它的这些特 性使其具有吸附能力强,吸附容量大的特点。

TiO₂ 因其具有催化活性高、稳定、难溶、无毒的化学性质成为广泛应用的光催化剂^[1]。目前,许多学 者就利用 ACF 载钛的光催化技术进行了研究^[2-8]。实现了吸附性能和光催化性能的有机结合,但 TiO₂只有 在紫外光下才具有活性,可见光未得到有效利用。Liangbin Xiong、Li 等^[9-11]将 Cu₂O 掺杂于 TiO₂纳米管中 能有效地提高对太阳光利用的效率。Huang、Zhang 等用 Cu₂O/TiO₂^[12-14]纳米材料在可见光和紫外光的照射 下成功地降解了水溶液中的酸性橙,其效率相比于纯 TiO₂纳米颗粒分别提高了 35 倍和 18 倍。证明 Cu₂O 的存在有利于提高 TiO₂的光催化效率。马腾飞^[15]实验研究证明 Cu₂O 是稳定性很好的一种半导体光催化剂, 它的能级差约为 2.0eV,可在太阳光的辐射下引发光催化反应。

目前 Cu₂O 的制备方法有很多^[16],固相法可以得到立方相纯 Cu₂O,但工业化技术尚不成熟;水解法可 以得到橙黄色的纳米 Cu₂O 粉体;电解法多用于工业,但该法电耗高,产量低;气相沉淀法在高温下可以 得到超细 Cu₂O 晶粒,喷雾热解法可制得粒度为 50nm 的 Cu₂O 薄膜,这些方法中很少能得到粒径均一、性 能稳定的 Cu₂O,而且比较复杂。化学沉淀法可以得到粒径为 10~45nm 的 Cu₂O,也是目前液相法制备 Cu₂O 的一种常用方法,因此,该研究采用水合肼还原法制备 Cu₂O。同样,TiO₂的制备可利用气相沉淀法^[17],但 该法成本高、回收率低。液相法制备 TiO₂是目前国内外广泛运用的方法:水热法对反应釜要求较高;液相 沉淀法制备工艺简单,但粒子团聚现象严重;溶胶凝胶法可得到粒径较细的 TiO₂,该研究采用溶胶凝胶法 制备纳米 TiO₂。

笔者对 ACF 负载 TiO₂/Cu₂O 光催化剂的制备及脱硝技术进行了研究,成功制备出在 40℃时脱硝效率达 61%的可见光催化剂。并对改性 ACF 进行 XPS 表征,分析其表面含氧官能团的分布,探讨改性后 ACF 的

^{*}通讯作者:赵然(1981-),男,副教授,博士,研究方向:大气污染物生成与控制.

基金项目:国家自然科学基金项目(50976041),煤燃烧国家重点实验室开放基金项目(FSKLCC1204).

脱销效率,实验证明改性后 ACF 表面官能团含量增加,有利于脱硝效率的提高。

2 实验部分

2.1 实验装置

图 1 为 ACF 吸附脱硝的实验装置示意图,实验过程中,按 O₂/N₂/NO=8/90/2.4 的流量比例配置模拟烟 气,同时烟气总流量通过流量计控制在 200ml/min,从混气瓶流出的模拟烟气,从底端进入已放置好 ACF 的光催化反应器,在模拟混合烟气的上升过程中,ACF 在光照条件下吸收模拟烟气中的氮氧化物,然后模 拟烟气从反应器顶端流出到气体吸收装置中,与流量控制在 800ml/min 的 Ar 进行混合,烟气流出后通过烟 气分析仪,测出烟气被 ACF 吸附过后剩余的氮氧化物含量得出其脱硝效率。实验时,光催化反应器置于 40°C 水浴中。

1-02 2-N2 3-N0 4-S02 5-Ar 6-流量控制计 7-混气瓶 8-光催化反应器 9-水浴锅 10-混气瓶 11-烟气分析仪 12-电脑 13-止回阀

图 1 ACF 吸附脱硝的实验装置示意图

2.2 催化剂的制备与讨论

2.2.1 制备方案的选定与分析

本实验催化剂有两种, 故按照以下四种方案: (1)制备 Cu₂O, 投入 TiO₂粉末, 向悬浮液中浸渍 ACF, 干燥后制得负载 TiO₂/Cu₂O 的 ACF 材料(ACF-1);(2)溶胶凝胶法制备纳米 TiO₂, 投入 Cu₂O 粉末, 向悬浊液中 浸渍 ACF, 干燥后制备得到负载 TiO₂/Cu₂O 的 ACF 材料(ACF-2), 制备 TiO₂时, 溶液配置比例为 n(水): n(钛 酸丁脂): n(乙醇): n(二乙醇胺)=10: 1: 23: 2.5; (3) 在方案二的基础上改变溶液配置比例, 使 n(水): n(钛 酸丁脂): n(乙醇): n(二乙醇胺)=5: 1: 15: 1.63(ACF-3); (4)制备 Cu₂O, 溶胶凝胶法制备 TiO₂, 二者混合后 向悬浊液中浸渍 ACF, 干燥后制备得到负载 TiO₂/Cu₂O 的 ACF 材料(ACF-4)。这四种方案分别进行制备催化 剂。实验结果表明, 方案二与方案三制备过程中, ACF(ACF-2、ACF-3)负载量过大, 改变了 ACF 本身性 质, 不可取。方案—(ACF-1)与方案四(ACF-4)在光照下脱硝情况对比如图 2, 结果表明 ACF-1 效果明显好 于 ACF-4, 而且 ACF-4 很快被穿透, 吸附 5 分钟后 NO 浓度很快回升, 脱销效率明显下降。 2.2.2 制备方案的完善与分析

在方案一的基础上以 Ti、Cu 比例为变量, Ti:Cu 分别为 0.5:1, 1:1, 1.5:1, 2:1 进行对比实验, 得出光 照下脱硝情况对比如图 3。

实验表明, Ti:Cu=0.5:1 时脱硝效果最好, 证明在 Ti:Cu=0.5:1 时 TiO2 与 Cu2O 混合最均匀, 有利于 ACF 吸收负载。所以选择该方案进行下一步调整。

以 ACF 负载量为变量调整, 即改变浸泡时间, 选取 ACF 浸泡时间分别为 10min, 30min, 50min, 70min。 四种不同浸泡时间的方案在光照下脱硝情况对比如图 4。

ACF 浸泡 50min 时脱 NO 效果最好,此时脱硝效率达到 61%。证明浸泡时间为 10min、30min 时,因 浸泡时间短, ACF 负载量较少; 负载 50min 后, TiO₂/Cu₂O 光催化剂均匀分布在 ACF 微孔表面, ACF 对 TiO₂ 和 Cu₂O 充分吸收,达到最佳状态;而负载 70min 则使 ACF 表面负载量过多导致微孔表面堵塞,反而降低 了改性 ACF 的脱销效率。

综上所述、制备 Cu₂O, 投入 TiO₂粉末, 且 Ti:Cu=0.5:1, 水浴温度为 40℃, ACF 浸泡时间为 50min 的 方案制备的催化剂(ACF-1)脱硝效率最高,该方案中,催化剂均匀混合,且ACF负载量达到最佳状态。

3 结果与讨论

3.1 XPS 表征

利用 XPS 对 ACF-1 与 ACF-4 进行表征,分析 ACF 改性前后的元素含量得表 1。改性后氮元素与氧元 素的相对含量均增加,且 ACF-1 中氧元素相对含量比 ACF-4 多。同时,图 5 给出 ACF-1 和 ACF-4 的 XPS 全扫图,在结合能相同时,ACF-1的光电子测量强度明显高于 ACF-4,可知 ACF-1 的官能团含量较多。

表 1 改性則后 ACF 的元素相对含重					
样品	С	0	Ν	O/C	N/C
ACF-AR	89.9	7.8	1.5	0.087	0.017
ACF-1	72.0	17.8	10.2	0.247	0.141
ACF-4	71.6	17.0	11.4	0.237	0.159

对改性前后的 ACF 进行 XPS 分峰拟合测定其表 面含氧官能团的分布及含量。将各小峰的面积除以总 面积,可得到各含氧官能团的相对含量(表 2),由表 2 可知,改性后 ACF 的表面碳氧官能团含量明显改变。 两种方案制备的催化剂碳化物含量、醇(-OH)官能团、 醚(C-O-C)官能团和羧基含量均减少,石墨碳(C-C) 和羰基(C=O)官能团含量均增加。发生这种变化是由 于 ACF 在 TiO₂/Cu₂O 光催化剂的负载过程中, TiO₂和 Cu₂O 分布在 ACF 表面, 与 ACF 表面含氧官能团发生 化学反应。而改性后 ACF-1 的脱硫效果明显好于 ACF-4, 证明 C-O 官能团和石墨碳的含量越多, ACF 对 NO 的吸附量越大。图 6(a) 为 ACF-1 与 ACF-4

的 C1s 窄扫分峰对比, 由图 6 (a) 可知, 方案一制得的改性活性炭纤维 (ACF-1) 的结合能强度明显比 ACF-4 强度大。

农之 (15) 衍珀朱: 013 万吨农田畈丰日把四百里					
样品	Carbide carbon	Graphite carbon	-ОН, С-О-С	C=O	-COO-
ACF-AR	6.52	33.56	37.14	10.50	7.27
ACF-1	3.62	44.86	35.38	12.18	3.96
ACF-4	2.36	50.95	26.44	16.04	4.21

丰 0 VDC 八长柱田 01。八條丰五咫后宁华田今昌

在 C1s 的分峰基础上,对 ACF-1 和 ACF-4 进行含氮、含氧、含硫官能团的分峰拟合分析。图 6 (d)、 (e)、(f)分别给出了 ACF-1 与 ACF-4 的在 N1s、O1s 和 S2p 处的结合能对比。

ACF 表面含氮官能团通过对 N1s 分峰拟合得到, 查表可知含氮官能团中吡啶、氮铜官能团、吡咯、四

元环 N(N-Q)官能团结合能分别为 398.5eV, 400.5eV, 401.2eV。两个样品 N1s 峰分峰拟合后含氮官能团 的相对百分含量由分峰拟合后各分峰面积分别计算,结果如表 3。由图 6 (d) 可知 ACF-1 表面含氮官能团 含量较 ACF-4 多, 而由表 3 可知 ACF-1 表面的氮铜官能团相对含量达 71.91%, 远高于 ACF-4 的含量, 可知氮铜官能团含量越多, NO 吸附效率越高。

ACF 表面含氧官能团通过对 O1s 分峰拟合得到, 查表可知含氧官能团中 CuO、TiO2、Cu2O、(L-cysteinato -N,O,S)官能团结合能分别为 528.6eV, 529eV, 530.5eV, 531.7eV, 两个样品对 O1s 峰分峰拟合后含氧官能 团的相对百分含量如表 4。由图 6(e)可知 ACF-1 表面含氧官能团含量较 ACF-4 多, 但由表 4 可知 ACF-4 中 Cu₂O 的相对含量达 73.13%, TiO₂的相对含量为 1.00%; ACF-1 中 Cu₂O 的相对含量为 37.39%, TiO₂的相 对含量为 13.59%, 而制备催化剂过程中, TiO2与 Cu2O 均按摩尔比为 1:1 的比例制备, ACF-4 对 TiO2和 Cu2O 没有均匀吸收, ACF-1 对 TiO2和 Cu2O 的吸收较为均匀。

ACF 表面含硫官能团通过对 S₂,分峰拟合得到,查表可知含硫官能团中 Na₂SO₃、(C₆H₅S(O)₂N-(C4H2N(S))-C6H5)2Cu、Tl2Cu(SO4)2、CuSO4官能团结合能分别为 166.6eV, 168eV, 168.9eV, 169.2eV, 两个样 品 N1s 峰分峰拟合后含硫官能团的相对百分含量如表 5。同样,由图 6 (f)可知 ACF-1 表面含硫官能团含 量较 ACF-4 多, 由表 5 可知, ACF-1 表面硫铜官能团 (笔者用 Tl₂Cu(SO₄)和(C₆H₅S(O)₂-N(C₄H₂N(S))-C₆H5)₂Cu 分析)达84.49%,而硫酸盐(笔者用 Na₂SO₃和 CuSO₄分析)含量较少,占15.51%,而 ACF-1 表面硫铜官 能团相对含量仅占 41.33%, 而硫酸盐相对含量较 ACF-1 多, 达 58.67%。因而在方案四中制备好 Cu₂O 后 搁置与室内, 溶胶凝胶法制备纳米 TiO2的过程中, 部分游离的铜离子易与悬浊液中的硫酸根离子结合生产 硫酸盐,同时已生成的 Cu₂O 易被氧化,导致制备的催化剂纯度不高。

因此,投入的活性 TiO,比溶胶凝胶法制备的 TiO,与 Cu₂O 的混合悬浊液更容易被 ACF 吸收而负载于表 面,制备过程中投入的 TiO₂与制备的 Cu₂O 悬浊液更均匀,而且催化剂纯度更高,而溶胶凝胶法制备 TiO₂ 时,不可避免的使已制备好的 Cu₂O 置于室内,失去了实验混合 TiO₂和 Cu₂O 这两个催化剂的最佳时机。另 外,利用方案一改性的活性炭纤维(ACF-1)表面碳氧官能团、含氮官能团、含氧官能团、含硫官能团含量 均大于利用方案一改性的活性炭纤维(ACF-4)由此可知, TiO2与 Cu2O 混合更均匀, 有利于 ACF 的负载。

表 3 XPS 分析结果: N1s 分峰表面含氮官能团含量					
样品	吡啶	N–Cu	吡咯	四元环	
ACF-1	14.21	71.91	6.17	7.71	
ACF-4	20.23	54.14	18.20	7.42	
	表 4 XPS 分	Ւ析结果:O1s 分峰表面	含氧官能团含量		
样品	CuO	TiO ₂	Cu ₂ O	(L–cysteinato–N,O,S)	
ACF-1	20.09	13.59	37.39	28.93	
ACF-4	19.40	1.00	73.13	6.47	

表 3 XPS 分析结果: N1s 分峰表面含氮官能团含:	表 3	XPS 分析结果:	N1s 分峰表面含氮官能团含量
-------------------------------	-----	-----------	-----------------

表 5 XPS 分析结果: S2p 分峰表面含硫官能团含量					
样品	Na_2SO_3	$(C_6H_5S(O)_2N(C_4H_2N(S))C_6H5)_2Cu$	$Tl_2Cu(SO4)_2$	CuSO_4	
ACF-1	12.26	51.60	32.89	3.25	
ACF-4	31.64	40.10	1.23	27.03	

3.2 结论

笔者通过制备合适的 TiO₂/Cu₂O 光催化剂负载于 ACF 上后 , 对其进行表面孔径分析 , 用 XPS 分析了改 性 ACF 表面元素与官能团数量,并进行脱硝实验研究。得出结论如下:

(1) 投入的活性 TiO₂ 比溶胶凝胶法制备的 TiO₂ 与 Cu₂O 的混合悬浊液更容易被 ACF 吸收并负载于表 面,制备过程中投入的TiO2与制备的Cu2O悬浊液更均匀,而且催化剂纯度更高。

(2) 负载 50min 后, TiO₂/Cu₂O 光催化剂均匀分布在 ACF 微孔表面, ACF 对 TiO₂和 Cu₂O 充分吸收,

达到最佳状态, 而负载 70min 则使 ACF 表面负载量过多导致微孔表面堵塞, 反而降低了改性 ACF 的脱销 效率。

图 6 改性 ACF XPS 表征

参考文献:

- Michael R. Hoffmann, Scot T. Martin, Wonyong Choi, et al. Environment application of semiconductor photocatalysis[J]. Chem Rev, 1995, 95(1): 69–96.
- [2] 陈培, 刘润龙, 朱丹, 等. 载钛活性炭纤维的制备及其对水中罗丹明 B 的光催化降解[J]. 环境化学, 2015, (1): 144-149.
- [3] 陈勇,陈鹏,陈超,等. La、Fe 共掺杂 TiO_2/活性炭纤维的制备及其光催化性能[J]. 功能材料, 2014, (3): 3135-3140.
- [4] 周前, 胡明江. Ce-TiO_2/ACF 型催化剂低温降解柴油机醛酮的研究[J]. 环境工程, 2014, (4):87-91.
- [5] 贺亚南,贾瑛,张永勇,等. 负载化 TiO_2 固体超强酸的制备及光催化降解 UDMH 废水研究[J]. 化学推进剂与高分子 材料, 2014, (3):47-52.
- [6] 陈印,马晓军.改性 TiO2 负载活性炭纤维的研究进展[J].林产化工通讯, 2014, (4):40-44.
- [7] 陈鹏,陈勇,陈超,等. 镧掺杂TiO_2/活性炭纤维复合光催化材料的制备及性能[J]. 材料导报,2014,(10):42-45+66.

[8] 庞里涛,刘永红,程刚. TiO₂/ACF 复合材料的制备及表征[J]. 应用化工,2014,(10):1754-1757.

- [9] Liangbin Xiong, Fan Yanga, Lili Yana, et al. Bifunctional photocatalysis of TiO_2/Cu_2O composite under visible light:Ti³⁺ in organicpollutant degradation and water splitting[J]. Journal of Physics and Chemistry of Solids, 2011, 72(9):1104–1109
- [10] Z. H. Li, J. W. Liu, D. J. Wang, et al. Cu₂O/Cu/TiO₂ nanotube Ohmic heterojunction arrays with enhanced photocatalytic hydrogen production activity[J]. International Journal of Hydrogen Energy, 2012, 37(8): 6431–6437.
- [11] Li Li, Lei Jingguo, Ji Tianhao. Facile fabrication of p-n heterojunctions for Cu₂O submicroparticles deposited on anatase TiO₂ nanobelts[J]. Materials Research Bulletin, 2011, 46(11): 2084–2089.
- [12] Huang L, Peng F, Wang HJ, et al. Preparation and characterization of Cu₂O/TiO₂ nano-nano heterostructure photocatalysts[J]. Catalysis Communications, 2009, 10(14): 1839–1843.
- [13] R uby Mohamed A El, Rohani S. Modified TiO₂ nanotube arrays(TNAs): Progressive strategies towards visible light responsive photoanode, areview[J]. Energy & Environmental Science, 2011, 4(4): 1065–1086.
- [14] Zhang Shengsen, Zhang Shanqing, Peng Feng, et al. Electrodeposition of polyhedral Cu₂O on TiO₂ nanotube arrays for enhancing visible light photocatalytic performance[J]. Electrochemistry Communications, 2011, 13(8):861–864.
- [15] 马腾飞. 纳米氧化亚铜的制备及光催化性能研究[J]. 宁德师专学报(自然科学版), 2009, 21(4): 358-362.
- [16] 高红秋,于良民,赵静,等.纳米氧化亚铜的制备及其在防污涂料中的应用[J]. 上海涂料, 2008, 46(12): 30-33.
- [17] 张海丰,张鹏宇,赵贵龙,等.纳米二氧化钛的制备及其应用研究进展[J].东北电力大学学报,2014,(2):52-56.

Preparation and Compare Research of Visible-Light Photocatalyst on ACF

LI Chong-jiu, ZHAO Ran, ZHU De-li, LIU Hao, YU Gang, XIA Dong-sheng

(1. School of Environmental Engineering, Wuhan Textile University, Wuhan Hubei 430200, China)

(2. State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan Hubei 430074, China)

Abstract: The catalyst which is made by putting the TiO_2 powder into the Cu₂O solution is used to modify the activated carbon fibers(ACF-1), compared with the one made by the suspension of prepared TiO_2 and prepared $Cu_2O(ACF-4)$. Then the removal efficiency of NO by the ACF after modification was investigated, it proves that the denitration of ACF-1 is better than the other one, so select ACF-1 for next adjustment. During the process of preparing Cu₂O, the TiO_2 inputs volume, and ACF load time are all the variable of the experiment. different for regulation. Finally selected the catalyst under the conditions of Ti:Cu=0.5:1, load time for 50min to modified activated carbon fiber (ACF-1), and XPS characterization is used to construct the different of surface functional groups between ACF-1 and ACF-4. The result shows that the surface functional groups has increased after modified, which enhanced the denitration efficiency up to 61%. **Key words:** activated carbon fiber(ACF); TiO_2/Cu_2O light catalyst; denitration