磺化聚醚醚酮的合成工艺优化及表征

魏浩然,黄振圣,程 伟,张宏伟*

(武汉纺织大学 材料科学与工程学院, 湖北 武汉 430073)

摘 要:针对文献中聚醚醚酮磺化浓硫酸用量过大的问题,通过正交实验设计,详细考察影响聚醚醚酮磺化的各因素间的主次关系,并用红外光谱和酸碱滴定方法对磺化聚醚醚酮进行表征。结果发现温度对聚醚醚酮磺化影响最大,其次是时间,最后是聚醚醚酮与浓硫酸之间的比例。优化的磺化工艺中1g聚醚醚酮所使用的浓硫酸不足7 ml,此值仅为文献中数据的7%~30%。

关键词:聚醚醚酮;磺化;工艺优化

中图分类号: TQ324

文献标识码: A

文章编号: 2095 - 414X(2013)03 - 0068 - 04

1 前言

能源危机和环境问题促使人们寻求替代的、可持续的新能源,燃料电池,特别是质子交换膜燃料电池(PEMFC),作为有着广阔应用前景的新能源技术而备受关注。质子交换膜是 PEMFC 中的关键材料之一,目前广泛使用的是杜邦公司的 Nafion 系列膜,但存在着价格高、甲醇渗透严重和使用温度不高的缺点^[1]。聚醚醚酮(PEEK)主链上的芳环和极性酮基赋予其优异的耐热性和力学性能,而主链上的醚键则赋予其韧性^[2]。磺化后的 PEEK(SPEEK)不仅在耐热性和力学性能方面优于 Nafion 膜,在阻甲醇渗透方面也有出色表现,因而受到研究人员的青睐^[3-12]。不过这些文献中 PEEK 的磺化工艺中浓硫酸使用量非常高(表 1),在增加成本的同时,还增加了后处理的难度。

** XM() == (A) & (b) = B							
序号	归一化的浓硫酸与 PEEK 用量比例 (ml/g)	反应温度 (℃)	反应时间 (h)	文献			
1	50	室温	24~112	[6]			
2	35	室温	60~240	[7]			
3	27.8	65	3	[8]			
4	50	25	30~96	[9]			
5	23.8~100	8~55	4~65	[10]			
6	50	室温	24~72	[11]			

表 1 文献中 PEEK 的磺化工艺

本文针对这一问题,通过正交实验设计考察 PEEK 磺化工艺中各因素的影响程度,从而对各因素优化组合,在保证磺化 PEEK 性能的同时,有效地减少浓硫酸的用量。

2 实验部分

2.1 PEEK 的磺化

将 PEEK (Victrex 450G)样品在 100 ℃ 下真空干燥 24 h,然后称取一定的 PEEK 放入圆底烧瓶,再量取一定的的浓硫酸加入烧瓶,兼作溶剂和磺化剂。在一定温度下搅拌溶解并反应一定时间,将烧瓶内反应后的混合物倒入大量去离子水中得到 SPEEK,将 SPEEK 多次洗涤,直至 pH 接近中性,最后将过滤后的SPEEK 放入烘箱中干燥 24 h。

2.2 PEEK 的磺化正交因素水平的确定

^{*}通讯作者: 张宏伟(1976-), 男, 教授, 研究方向: 功能膜材料.

根据文献报道^[6-11],选择 PEEK 与浓硫酸用量比例、反应温度和反应时间作为考察因素,各因素的水平选择如表 2。

农 2 I LEN 惯化的正义大型二四系二小十次									
水平	A	В	С						
水 干	PEEK 重量(g,浓硫酸恒定为 30ml)	反应温度 (℃)	反应时间 (h)						
1	0.6g	20	24						
2	1.5	30	36						
3	3.0	40	18						

表 2 PFFK 磺化的正交实验三因素三水平表

2.3 SPEEK 的离子交换容量(IEC)的测定

将一定质量的 SPEEK 浸泡在 1 M 的 NaCl 溶液中 24 h,然后用浓度为 0.1 M 的 NaOH 溶液进行酸碱滴定,以酚酞作指示剂。IEC (mmol/g) =[消耗 NaOH 溶液的体积(ml)]/[SPEEK 的质量 $(g) \times 10$]。磺化度(DS)则可通过 IEC (mmol/g)=1000DS/(288+80DS)来计算,其中 288 为 PEEK 结构单元的相对分子量,80 则为磺酸基中硫和氧的分子量之和。

2.4 红外光谱的测定

PEEK 和 SPEEK 的红外光谱采用 Bruker 33 红外光谱分析仪测定,用薄膜和 KBr 压片两种方法制样。

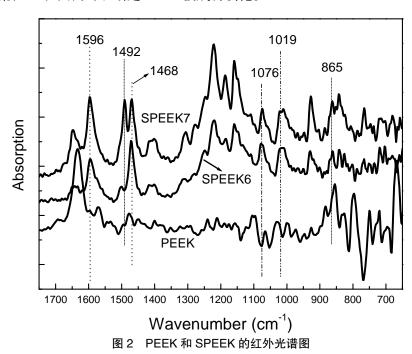
3 结果与讨论

3.1 PEEK 磺化工艺的优化分析

表 3 下方分别算出了三个水平相应 SPEEK 的 IEC 值 K1、K2、K3 和平均性能值 k1、k2、k3 及极差。极差大的因素,说明它的三个水平对 IEC 的影响显著,通常是重要的因素,极差小的因素,是次要因素,按照极差的大小,因素影响的主次顺序为:反应温度>反应时间>PEEK 用量(反应浓度)。尽管有的文献认为高 PEEK 含量会导致磺化过程生成的水稀释浓硫酸(图 1),从而使 SPEEK 处于低磺化水平^[10],但实验结果表明:在增加 PEEK 用量的同时,通过提高反应温度,同样可以获得高磺化水平的 SPEEK。

图 1 PEEK 的磺化反应式

表 3 L。(33)实验结果分析


☆ i	因子			SPEEK 的	SPEEK 的磺
实验号	PEEK 用量(g)	反应温度(℃)	反应时间(h)	IEC (mmol/g)	化度(计算值)
1	0.6	20	24	1.47	0.480
2	0.6	30	36	2.01	0.690
3	0.6	40	48	3.00	1.137
4	1.5	20	48	1.82	0.613
5	1.5	30	24	1.71	0.571
6	1.5	40	36	1.92	0.654
7	3	20	36	1.52	0.498
8	3	30	48	2.53	0.914
9	3	40	24	2.41	0.860
K1	6.47	4.77	5.57		
K2	5.4	6.2	5.4		
К3	6.4	7.3	7.3		
k1	2.16	1.59	1.86		
k2	1.8	2.07	1.8		
k3	2.1	2.43	2.43		
极差	0.36	0.84	0.63		
优方案	0.6	40	48		
次优方案	3	40	48	2.54	0.918
放大生产方案	3	30	24	1.93	0.657

通过上述结果分析,可以确定优方案和次优方案,结合降低浓硫酸用量的目的,按照次优方案生产的 SPEEK 的 IEC 为 2.54 mmol/g。与 8^* 与 9^* 样相比,反应时间的延长和反应温度的增加,并不会带磺化度的显著增加。这是由于苯环在引入一个 $-SO_3H$ 基团后,其强烈的吸电子效应使苯环上的电子云密度显著下降,使得苯环在本次实验温度下很难再接受第二个 $-SO_3H$ 的进攻。

但是根据质子交换膜的性能要求^[1],SPEEK 膜除应有足够高的 IEC(或者磺化度)外,还应该具有良好的抗溶胀性能,显然 IEC 过高的 SPEEK 不能满足这一要求。因而,基于本次的实验结果和借鉴文献数据^[9],通过降低温度和缩短反应时间的方法来对次优方案进行再改进,形成放大生产的实验方案:单次 PEEK 投料量提高至 $21~\mathrm{g}$,浓硫酸用量为 $210~\mathrm{ml}$,反应温度为 $30~\mathrm{^{\circ}C}$,反应时间为 $24~\mathrm{h}$,所得 SPEEK 的 IEC 为 $1.93~\mathrm{mmol/g}$,磺化度约为 0.657,由文献[9,12]可知该磺化度的 SPEEK 具有适中的吸水和溶胀。

3.2 红外光谱

图 2 为 PEEK 和 SPEEK 的 FTIR-ATR 谱图,1492 和 1468 cm⁻¹ 的吸收峰是由于磺酸基团在苯环的引入,苯环由二取代变为三取代后,芳香 C-C 键的吸收峰分裂所致;三取代苯环的面外歪曲振动峰位移到了 865 cm⁻¹; 1019 和 1076 cm⁻¹的吸收峰则应归属于磺酸基团中 O=S=O 的对称与非对称伸缩振动。这些吸收峰与文献报道的结果类似^[6,8,9,12],因而可以断定 PEEK 被成功磺化。

4 结论

通过以上分析,可以得出以下结论:

- (1)用浓硫酸磺化 PEEK 的工艺中最大的影响因素是温度,其次是反应时间, PEEK 用量(反应浓度)影响最小;
 - (2) SPEEK 的 IEC 测定和红外光谱表征表明, SPEEK 的 IEC 随反应温度和反应时间的增加而增加;
- (3)正交实验和产品放大生产的结果表明,可以将每克 PEEK 磺化所消耗的浓硫酸降至 7ml 以下,同时仍可保证 SPEEK 制备的质子交换膜兼具适中的磺化度和抗溶胀性能。

参考文献:

- [1] Zhang H W, Shen P K. Recent Development of Polymer Electrolyte Membranes for Fuel Cells[J]. Chem. Rev., 2012, 112: 2780–832.
- [2] 郝章来, 吴丽君. 聚醚醚酮的生产应用及发展前景[J]. 化工新型材料, 2004, 32(4): 43-44.
- [3] 李磊, 许莉, 王宇新. 磺化聚醚醚酮膜的制备及其阻醇和质子导电性能[J]. 高分子学报, 2003, (3): 452-455.

- [4] 靳豪, 谢晓峰, 尚玉明, 等. 磺化聚醚醚酮(sPEEK) / SiO_2 杂化质子交换膜的制备与表征[J]. 清华大学学报(自然科学版), 2007, 47(12): 2213–2215.
- [5] 薛松, 尹鸽平. 磺化聚醚醚酮/磷钨酸复合膜的导电和甲醇渗透性能[J]. 高分子学报, 2006, (9): 1083-1087.
- [6] Zaidi S M J, Mikhailenko S D, Robertson G P, et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications[J]. J. Membr. Sci., 2000, 173: 17–34.
- [7] Xing P X, Robertson G P, Guiver M D, et al. Synthesis and characterization of sulfonated poly(ether ether ketone) for proton exchange membranes[J]. J. Membr. Sci., 2004, 229: 95–106.
- [8] Song J M, Shin J, Sohn J Y, et al. Preparation and Characterization of SPEEK Membranes Crosslinked by Electron Beam Irradiation[J]. Macromol. Res., 2011, 19: 1082–1089.
- [9] 张高文, 周震涛. 磺化聚醚醚酮膜的制备及性能[J]. 电池, 2005, 35(4): 292-294.
- [10] 邢丹敏, 付永柱, 刘富强, 等. 燃料电池用磺化聚醚醚酮质子交换膜的研究[J]. 高分子材料科学与工程, 2005, 21(3): 282-285.
- [11] 范进伟, 黄沙, 李凤标, 等. 磺化聚醚醚酮的合成及其性能表征[J]. 化学与生物工程, 2007, 24(5): 29-31.
- [12] 刘珊珊, 肖立奇, 唐浩林, 等. 燃料电池用磺化聚醚醚酮质子交换膜的制备及性能[J]. 武汉理工大学学报, 2006, 28: 605-608.

Characterization and Synthesis Process Optimization of Sulfonated Poly(Ether Ether Ketone)

WEI Hao-ran, HUANG Zhen-sheng, CHENG Wei, ZHANG Hong-wei

(College of Materials Science and Engineering, Wuhan Textile University, Wuhan Hubei 430073, China)

Abstract: In order to reduce the consumption of concentrated sulfuric acid, a cross-experiment for the sulfonation of poly(ether ether ketone)s was designed and carried out. The sulfonated poly(ether ether ketone)s (SPEEK) were charactered by the acid-base titration and the fourier transform infrared attenuated total reflection (FTIR-ATR). Based on the results of ion-exchange capacity of SPEEKs, the influential parameters to sulfonation were ordered: the reaction temperature > reaction time > ratio of PEEK to concentrated sulfuric acid. Under the optimum reaction conditions, only about 7 ml concentrated sulfuric acid was used for the sulfonation of per 1 g PEEK, which was only 7~30% of the values reported in literatures.

Key words: Poly(Ether Ether Ketone); Sulfonation; Cross-Experiment